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Introduction

When We Use Logistic Regression

Response is binary

Response: yi = 0 or 1 for all i

E.g.
whether a person supports the current cabinet or
not
whether a person turns out to vote or not
whether an armed conflict occurs or not
etc.
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Introduction

Visualize Binary Variable
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Introduction

Fitting the Logistic Curve
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Logistic Regression with One Predictor

An Example Model of Logistic Regression

Response: the result of SMD election (win or lose):
yi =0 (lost) or 1 (won)

Predictor: electoral expenditure (million yen), expm

Logistic curve of the model

Pr(yi = 1) = logit−1(−2.00+0.14 · expm)
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Logistic Regression with One Predictor

Logistic Regression Model

Value of the response is either 0 or 1: linear models
“Xβ + error” don’t fit well
Instead, we model the probability of y being 1

Pr(yi = 1) = logit−1(Xiβ )

Assumption: Given the probability of success pi, each
yi is independently determined

yi ∼ Bernoulli(pi)

We call Xβ linear predictor（線形予測子）
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Logistic Regression with One Predictor

Logistic [Inverse Logit] Function)

logit−1(x) =
ex

1+ ex =
1

1+ exp(−x)

Function that maps x ∈ (−∞,∞) on (0, 1)
Appropriate to treat probabilities
Logistic function is the inverse of the logit function,
hence we write logit−1
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Logistic Regression with One Predictor

Logistic Curves (1)
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Logistic Regression with One Predictor

Logistic Curves (2)
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Logistic Regression with One Predictor

Logistic Function and Logit Function (1)

Logit function
the inverse of logistic function

maps a continuous variable z ∈ (0,1) on (−∞,∞)

xi = logit(pi) = log
(

pi

1− pi

)
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Logistic Regression with One Predictor

Logistic Function and Logit Function

Two representations of the model

Pr(yi = 1) = pi

1 Logistic

pi = logit−1(Xiβ ) =
1

1+ exp(−Xiβ )

2 Logit

logit(pi) = log
(

pi

1− pi

)
= Xiβ

Both are important and frequently used
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Logistic Regression with One Predictor

Logistic “Curves”

Logistic curves are not lines: effects are not constant
the amount of change in the response corresponding
to 1-unit change of a predictor is not constant: the
effect size depends on the value of the predictor

logit(0.5) = 0, logit(0.6) = 0.4: 0.4 unit change on
logit scale is equivalent to 10 point change from
50% to 60% on probability scale
logit(0.07) = −2.6, logit(0.1) = −2.2: 0.4 unit
change on logit scale is equivalent to 3 point
change from 7% to 10% on probability scale

the change in the response corresponding to a certain
amount of change in the predictor: small when the
predictor takes on values near minimum or maximum,
and large when it takes on values around the mean

13 / 23



Logistic Regression Interpreting Logistic Regression

Estimated Coefficients

Evaluating the Data around the Mean (1)

Pr(win) = logit−1(−2.00+0.14 · expm)

Logistic curve is not linear: the effect size depends on
where of the data we evaluate

Evaluate the probability of success at the mean
mean(exam) = 6.12
logit−1(−2.00+0.14 ·6.12) = 0.24
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Estimated Coefficients

Evaluating the Data around the Mean (2)

Pr(win) = logit−1(−2.00+0.14 · expm)

Evaluate the effect of the predictor on the success
probability around the mean

mean(exam) = 6.12 : Compare when expm = 6
and when expm = 7
logit−1(−2.00+0.14 ·7)− logit−1(−2.00+0.14 ·6) =
0.026
1-unit increase of the expenditure around its
mean leads to 2.6 point increase of the winning
probability
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Estimated Coefficients

Evaluating the Data around the Mean (3)

Pr(win) = logit−1(−2.00+0.14 · expm)

Evaluate analytically,

d
dx

logit−1(−2+0.14x) = 0.14
exp(−2+0.14x)

[1+ exp(−2+0.14x)]2

Plug x̄ = 6.12 into x

d
dx

logit−1(−2+0.14 ·6.12) = 0.026
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Estimated Coefficients

Divide-by-4 Rule

the slope of the tangent of the logistic curve: max when
Xβ = α +βx = 0

logit−1(0) = 0.5

the slope is

d
dx

logit−1(0) = β
e0

(1+ e0)2 =
β
4

Maximal effect of the predictor is the value of the
coefficient divided by 4

Winning probability: the coefficient of the expenditure
0.14：0.14/4 = 0.035 → 1 unit increase of the expenditure
raises the winning probability by 3.5 percentage points at
most
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Estimated Coefficients

Odds and Odds Ratios

Odds of success when the probability of success is p and
that of failure is 1− p:

p
1− p

p = 0.5 → odds is 1
p = 1/3 → odds is 0.5

Odds ratio: the ratio of two sets of odds

p1

1− p1
/

p2

1− p2

Merit of using odds ratios: no upper limit
Odds and odds ratios are different: do not confuse
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Estimated Coefficients

Interpreting Logistic Regression with Odds

Odds of logistic regression:

Pr(y = 1|x)
Pr(y = 0|x)

=

(
exp(α +βx)

1+ exp(α +βx)

)
/

(
1− exp(α +βx)

1+ exp(α +βx)

)
= exp(α +βx)

Take natural logarithms of both sides

log
(

Pr(y = 1|x)
Pr(y = 0|x)

)
= α +βx = logit(α +βx)

In logarithmic scale, 1 unit increase of x increase the odds
by β
In the original scale, the amount of change is exp(β )
E.g., exp(0.14) = 1.15 : 1 unit increase of x → the odds of
winning is multiplied by 1.15: odds ratio is 1.15
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Statistical Inference

Estimates and Standard Errors of Coefficients

Purpose of logistic regression: estimate β in the
linear predictor
Estimation method: maximum likelihood method
the point estimate of β
β̂ ±2se are consistent with data
Election example: β̂ = 0.14, se = 0.01 → β in
[0.14±2 ·0.01] = [0.12,0.16] are consistent with the
data
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Statistical Inference

Statistical Significance

β̂ is more than 2se away from 0: the effect is
statistically significant
Election example: β̂ = 0.14 is statistically significant
positive effect: the electoral expenditure increases the
probability of winning
We don’t discuss the significance of the intercept:
we’re not interested
Careful interpretation is required for interaction terms
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Let’s run some logistic regression with R
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Next Week

Maximum Likelihood Method（最尤法）
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