Research Methods in Political Science I

Logistic Regression (2)

Yuki Yanai

School of Law and Graduate School of Law

December 16, 2015

Today's Menu

Logistic Regression by ML

- Example Logistic Regression
- Computation

Evaluating Logistic Regression ResultsEvaluating the Fit

Example Logistic Regression

Question

Evaluating Logistic Regression Results

Example 1: Explain the win-lose in SMDs by the previous wins

Does the previous wins affect the victory in SMDs? If it does, how much? (fake data)

- Response y the number of winning candidates by previous wins
- Predictor t (terms): non-negative integer

We'd like to fit a logistic curve to summarize the data

Example Logistic Regression

Checking Variables

Evaluating Logistic Regression Results

Previous wins	Candidates	Winning Candidates
(t_i)	(n_i)	(y_i)
0	3	1
1	2	1
2	1	0
3	2	1
4	3	2
5	3	2
6	0	0
7	1	1
Total	15	8

Example Logistic Regression

Logistic Regression

• We model this problem with logistic regression:

$$p_i = \Pr(y_i|n_i, \theta_i) = \binom{n_i}{y_i} \theta_i^{y_i} (1 - \theta_i)^{n_i - y_i}$$

$$\theta_i = \frac{\exp(\beta_1 + \beta_2 t_i)}{1 + \exp(\beta_1 + \beta_2 t_i)}$$

$$Y_i \sim \operatorname{Bin}(n_i, \theta_i)$$

- θ_i the success probability for a Bernoulli trial
- Y_i are independent
- parameters: β_1 and β_2

Evaluating Logistic Regression Results

Example Logistic Regression

Specifying Likelihood Function

- Let $\binom{n_i}{y_i} = a_i$
- Likelihood function for the *i*-th observation:

$$L_{i}(\beta) = p_{i} = a_{i}\theta_{i}^{t_{i}}(1-\theta_{i})^{n_{i}-t_{i}}$$

= $a_{i}\left(\frac{\exp(\beta_{1}+\beta_{2}x_{i})}{1+\exp(\beta_{1}+\beta_{2}x_{i})}\right)^{y_{i}}\left(\frac{1}{1+\exp(\beta_{1}+\beta_{2}x_{i})}\right)^{n_{i}-y_{i}}$

 Since y_i are independent of each other, the likelihood function for the data is

$$L(\beta) = \prod_{i=1}^{n} L_{i}(\beta)$$

=
$$\prod_{i=1}^{n} a_{i} \left(\frac{\exp(\beta_{1} + \beta_{2} x_{i})}{1 + \exp(\beta_{1} + \beta_{2} x_{i})} \right)^{y_{i}} \left(\frac{1}{1 + \exp(\beta_{1} + \beta_{2} x_{i})} \right)^{n_{i} - y_{i}}$$

Example Logistic Regression

Evaluating Logistic Regression Results

KOBE

Specifying Log-Likelihood Function

Ignoring the constant term, the log-likelihood is

$$\begin{split} \log L(\beta) &= \log \prod_{i=1}^{n} L_{i}(\beta) \\ &= \sum_{i=1}^{n} \log \left(\frac{\exp(\beta_{1} + \beta_{2} x_{i})}{1 + \exp(\beta_{1} + \beta_{2} x_{i})} \right)^{y_{i}} \left(\frac{1}{1 + \exp(\beta_{1} + \beta_{2} x_{i})} \right)^{n_{i} - y_{i}} \\ &= \sum_{i=1}^{n} \log \theta_{i}^{y_{i}} (1 - \theta_{i})^{n_{i} - y_{i}} \end{split}$$

perform further calculation with R

Example Logistic Regression

Question

Evaluating Logistic Regression Results

Example 2: Explain the win-lose in SMDs by the electoral expenditure

Does the amount of electoral spending (million yen) affect the victory in SMDs? How much? (fake data)

- Response r: win = 1, lose = 0
- Predictor x (expenditure): non-negative real number (million yen)

We'd like to fit a logistic curve

Example Logistic Regression

Logistic Regression

Model this problem with logistic regression

$$\theta_i = \Pr(r_i = 1) = \frac{\exp(\beta_1 + \beta_2 x_i)}{1 + \exp(\beta_1 + \beta_2 x_i)}$$

$$r_i \sim \text{Bern}(\theta_i)$$

- θ_i: success probability of a Bernoulli trial
- r_i , (i = 1, 2, ..., n) are mutually independent
- parameters: β_1 and β_2

Evaluating Logistic Regression Results

Specifying Log-Likelihood Function

• Likelihood function for the *i*-th observation

$$L_i(\boldsymbol{\beta}) = \Pr(r_i | \boldsymbol{\beta}, \mathbf{x})$$

= $\theta_i^{r_i} (1 - \theta_i)^{1 - r_i}$
= $\left(\frac{\exp(\beta_1 + \beta_2 x_i)}{1 + \exp(\beta_1 + \beta_2 x_i)}\right)^{r_i} \left(\frac{1}{1 + \exp(\beta_1 + \beta_2 x_i)}\right)^{1 - r_i}$

• If r_i are independent of each other, the likelihood is

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} L_i(\boldsymbol{\beta})$$

• $\boldsymbol{\beta} = [\boldsymbol{\beta}_1, \boldsymbol{\beta}_2]^T$ • $\mathbf{x} = [x_1, \dots, x_n]^T$

Evaluating Logistic Regression Results

Example Logistic Regression

Specifying the Log-Likelihood Function

• The log-likelihood is

$$\log L(\boldsymbol{\beta}) = \log \prod_{i=1}^{n} L_{i}(\boldsymbol{\beta})$$

$$= \sum_{i=1}^{n} \log \left(\frac{\exp(\beta_{1} + \beta_{2}x_{i})}{1 + \exp(\beta_{1} + \beta_{2}x_{i})} \right)^{r_{i}} \left(\frac{1}{1 + \exp(\beta_{1} + \beta_{2}x_{i})} \right)^{1 - r_{i}}$$

$$= \sum_{i=1}^{n} \log \theta_{i}^{r_{i}} (1 - \theta_{i})^{1 - r_{i}}$$

• We perform further calculation with R

Computation

How to find the Maximum

- Ideal: Differentiate the (log-)likelihood function and find the maximum (i.e. solve the score equation)
- Problem: Can't always solve the equation
- Reality: "Search" the maximum by numerical methods (computation)
 - Bisection method (二分法)
 - Gradient method (勾配法)
 - Newton (Newton-Raphson) method
 - etc.

- Prediction by logistic regression: the probability that each response equals 1
- What we'd like to know is if the response is 0 or 1
- Predict the response using the predicted probabilities
 - 1 Predict $y_i = 1$ if $Pr(y_i = 1)$ exceeds (or falls below) a certain threshold (usually 0.5)
 - ② Simulation
- Calculate the ratio of observations whose predicted value matches the observed value
- We use the ratio as an index of fit
- Baseline: $max(\bar{y}, 1 \bar{y})$

Evaluating the Fit

ROC Curves

- ROC (receiver operating characteristic, 受信者操作特性) Curve
- Plot true positive rate (TPR, sensitivity) versus false positive rate (FPR, 1– specificity)
- Predict the response is 1 for $\pi > c$ and 0 for $\pi \le c$
- Draw a curve by changing the value of *c* from 1 to 0
- Random response (noise): ROC should be 45 degree line
- Accurate model: ROC curve should bend toward the upper left corner
- Good model has a large area under the curve (AUC)

Evaluating the Fit

• Akaike Information Criterion (AIC)

$$AIC = -2\log L(\hat{\theta}) + 2k$$

- k is the number of free parameters
- Better model has smaller AIC
 - Better as the maximum of the log-likelihood gets larger
 - Better with fewer parameters